The H-polynomial of a Group Embedding
نویسنده
چکیده
The Poincaré polynomial of a Weyl group calculates the Betti numbers of the projective homogeneous space G/B, while the h-vector of a simple polytope calculates the Betti numbers of the corresponding rationally smooth toric variety. There is a common generalization of these two extremes called the H-polynomial. It applies to projective, homogeneous spaces, toric varieties and, much more generally, to any algebraic variety X where there is a connected, solvable, algebraic group acting with a finite number of orbits. We illustrate this situation by describing the H-polynomials of certain projective G × G varieties X, where G is a semisimple group and B is a Borel subgroup of G. This description is made possible by finding an appropriate cellular decomposition for X and then describing the cells combinatorially in terms of the underlying monoid of B × B orbits. The most familiar example here is the wonderful compactification of a semisimple group of adjoint type.
منابع مشابه
Model Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series
Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...
متن کاملAn improved and efficient stenographic scheme based on matrix embedding using BCH syndrome coding.
This paper presents a new stenographic scheme based on matrix embedding using BCH syndrome coding. The proposed method embeds massage into cover by changing some coefficients of cover. In this paper defining a number :::as char:::acteristic of the syndrome, which is invariant with respect to the cyclic shift, we propose a new embedding algorithm base on BCH syndrome coding, without finding ro...
متن کاملPolynomial evaluation groupoids and their groups
In this paper, we show how certain metabelian groups can be found within polynomial evaluation groupoids. We show that every finite abelian group can beobtained as a polynomial evaluation groupoid.
متن کاملSteganography Scheme Based on Reed-Muller Code with Improving Payload and Ability to Retrieval of Destroyed Data for Digital Images
In this paper, a new steganography scheme with high embedding payload and good visual quality is presented. Before embedding process, secret information is encoded as block using Reed-Muller error correction code. After data encoding and embedding into the low-order bits of host image, modulus function is used to increase visual quality of stego image. Since the proposed method is able to embed...
متن کاملFlow Polynomial of some Dendrimers
Suppose G is an nvertex and medge simple graph with edge set E(G). An integervalued function f: E(G) → Z is called a flow. Tutte was introduced the flow polynomial F(G, λ) as a polynomial in an indeterminate λ with integer coefficients by F(G,λ) In this paper the Flow polynomial of some dendrimers are computed.
متن کاملSome New Results On the Hosoya Polynomial of Graph Operations
The Wiener index is a graph invariant that has found extensive application in chemistry. In addition to that a generating function, which was called the Wiener polynomial, who’s derivate is a q-analog of the Wiener index was defined. In an article, Sagan, Yeh and Zhang in [The Wiener Polynomial of a graph, Int. J. Quantun Chem., 60 (1996), 959969] attained what graph operations do to the Wiene...
متن کامل